Search results for "IMAGING CHERENKOV DETECTOR"

showing 6 items of 6 documents

High Resolution Spectroscopy ofBΛ12by Electroproduction

2007

An experiment measuring electroproduction of hypernuclei has been performed in Hall A at Jefferson Lab on a $^{12}$C target. In order to increase counting rates and provide unambiguous kaon identification two superconducting septum magnets and a Ring Imaging CHerenkov detector (RICH) were added to the Hall A standard equipment. An unprecedented energy resolution of less than 700 keV FWHM has been achieved. Thus, the observed \lam{12}{B} spectrum shows for the first time identifiable strength in the core-excited region between the ground-state {\it s}-wave $\Lambda$ peak and the 11 MeV {\it p}-wave $\Lambda$ peak.

PhysicsSuperconductivity010308 nuclear & particles physicsResolution (electron density)General Physics and AstronomyOrder (ring theory)Lambda01 natural sciencesRing-imaging Cherenkov detectorNuclear physicsFull width at half maximum0103 physical sciencesNuclear Experiment010306 general physicsSpectroscopyEnergy (signal processing)Physical Review Letters
researchProduct

Technical design report for the $\overline{{\rm{P}}}\mathrm{ANDA}$ Barrel DIRC detector

2019

The $\overline{{\rm{P}}}\mathrm{ANDA}$ (anti-Proton ANnihiliation at DArmstadt) experiment will be one of the four flagship experiments at the new international accelerator complex FAIR (Facility for Antiproton and Ion Research) in Darmstadt, Germany. $\overline{{\rm{P}}}\mathrm{ANDA}$ will address fundamental questions of hadron physics and quantum chromodynamics using high-intensity cooled antiproton beams with momenta between 1.5 and 15 GeV/c and a design luminosity of up to 2 × 1032 cm−2 s−1. Excellent particle identification (PID) is crucial to the success of the $\overline{{\rm{P}}}\mathrm{ANDA}$ physics program. Hadronic PID in the barrel region of the target spectrometer will be per…

PhysicsNuclear and High Energy PhysicsRange (particle radiation)Large Hadron ColliderPhysics::Instrumentation and Detectors010308 nuclear & particles physicsHadronDetectorBarrel (horology)7. Clean energy01 natural sciencesRing-imaging Cherenkov detectorParticle identificationCharged particleNuclear physics0103 physical sciencesHigh Energy Physics::Experimentddc:530010306 general physicsNuclear Experiment
researchProduct

Rapidity correlations in Lambda baryon and proton production in hadronic Z0 decays

1998

In an analysis of multihadronic events recorded at LEP by DELPHI in the years 1992 through 1994, charged hadrons are identified using the measurement of their energy loss and their Cherenkov angle. Rapidity correlations of \La-\La, proton-proton, and \La-proton pairs are compared. The agreement with the string and cluster fragmentation models is tested. For those pairs that frame a meson in terms of rapidity the compensation of strangeness is studied. For \La{}$\overline{\mathrm{p}}$ pairs the additional correlation with respect to charged kaons is analysed.

IMAGING CHERENKOV DETECTOR; DELPHIParticle physicsNuclear and High Energy PhysicsMesonElectron–positron annihilationHadronNuclear TheoryStrangenessLambdaLambda baryon01 natural sciencesPartícules (Física nuclear)Nuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Rapidity010306 general physicsNuclear ExperimentDELPHIPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyLARGE ELECTRON POSITRON COLLIDERIMAGING CHERENKOV DETECTORLarge Electron–Positron ColliderPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIPARTICLE PHYSICSPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentParticle Physics - Experiment
researchProduct

Performance of the DELPHI detector

1996

DELPHI (DEtector with Lepton, Photon and Hadron Identification) is a detector for e(+)e(-) physics, designed to provide high granularity over a 4 pi solid angle, allowing an effective particle identification, It has been operating at the LEP (Large Electron-Positron) collider at CERN since 1989. This article reviews its performance.

Nuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsENERGIESHadronDENSITY PROJECTION CHAMBER; IMAGING CHERENKOV DETECTOR; RADIATIVE-CORRECTIONS; LEP; SIMULATION; ENERGIES; Z(0); SCATTERING; PROGRAM; SYSTEM01 natural sciencesPartícules (Física nuclear)Particle identificationlaw.inventionNuclear physicslaw0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]PROGRAMRADIATIVE-CORRECTIONSSCATTERINGDetectors and Experimental Techniques010306 general physicsColliderInstrumentationDELPHINuclear and High Energy PhysicPhysicsLarge Hadron Colliderhigh granularityCalorimeter (particle physics)LEP; DELPHI; high granularity; particle identification010308 nuclear & particles physicsDetectorHigh Energy Physics::PhenomenologyLEPZ(0)LARGE ELECTRON POSITRON COLLIDERIMAGING CHERENKOV DETECTORFIS/01 - FISICA SPERIMENTALEPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHILarge Electron–Positron ColliderSIMULATIONPARTICLE PHYSICSPhysics::Accelerator PhysicsFísica nuclearHigh Energy Physics::ExperimentDENSITY PROJECTION CHAMBERparticle identificationSYSTEMLepton
researchProduct

FIRST MEASUREMENT OF THE STRANGE QUARK ASYMMETRY AT THE Z(0) PEAK

1995

A measurement of the strange quark forward-backward asymmetry at the Z0 peak was performed using 718,000 multihadronic Z0 decays collected by the DELPHI detector at LEP in 1992. The s-quark was tagged by the presence of high momentum charged kaons identified by the Ring Imaging Cherenkov detector and by Λ0;s decaying into pπ-. The s-quark purity obtained was estimated for the two hadrons to be 43%. The average s-quark asymmetry was found to be 0.131±0.035 (stat.) ±0.013 (syst.). The forward-backward asymmetry was measured for unresolved d-and s-quarks, tagged by the detection of a high energy neutron or neutral kaon in the Hadron Calorimeter. The combined d-and s-quark purity was 69% and th…

Strange quarkParticle physicsPhysics and Astronomy (miscellaneous)s-quarkLUND MONTE-CARLOHigh Energy Physics::LatticeElectron–positron annihilationmedia_common.quotation_subjectHadronNuclear TheoryLUND MONTE-CARLO; CHARGE ASYMMETRY; HADRONIC DECAYS; Z0; ANNIHILATION; EVENTS; JETSLambda01 natural sciencesAsymmetryRing-imaging Cherenkov detectorPartícules (Física nuclear)EVENTSNuclear physics0103 physical sciencesDELPHI; asymmetry; Z0 resonance; s-quark[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]NeutronZ0ANNIHILATION010306 general physicsNuclear ExperimentCHARGE ASYMMETRYEngineering (miscellaneous)DELPHImedia_commonPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyWeinberg angleLARGE ELECTRON POSITRON COLLIDERZ0 resonancePARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIJETSPARTICLE PHYSICSHigh Energy Physics::ExperimentCol·lisionadors d'hadronsHADRONIC DECAYSasymmetryParticle Physics - Experiment
researchProduct

A Search for Heavy Stable and Long-Lived Squarks and Sleptons in $e^+ e^-$ Collisions at Energies from 130 to 183 GeV

1998

A search for stable and long-lived heavy charged particles used the data taken by the DELPHI experiment at energies from 130 to 183 GeV. The Cherenkov light detected in the Ring Imaging Cherenkov Detector and the ionization loss measured in the Time Projection Chamber identify heavy particles from masses of 2 to nearly 89 GeV/c$^2$. Upper limits are given on the production cross-section and masses of sleptons, free squarks with a charge of $q = \pm 2/3e$ and hadronizing squarks. A search for stable and long-lived heavy charged particles used the data taken by the DELPHI experiment at energies from 130 to 183 GeV. The Cherenkov light detected in the Ring Imaging Cherenkov Detector and the io…

Nuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsFOS: Physical sciences01 natural sciencesRing-imaging Cherenkov detectorPartícules (Física nuclear)High Energy Physics - ExperimentPHYSICSHigh Energy Physics - Experiment (hep-ex)Ionization0103 physical sciencesCHARGED-PARTICLES; SUPERSYMMETRY; PHYSICS; LEP[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsNuclear ExperimentSUPERSYMMETRYCherenkov radiationDELPHIPhysicsTime projection chamber010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyCharge (physics)LEPLARGE ELECTRON POSITRON COLLIDERCharged particleCHARGED-PARTICLESPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIPARTICLE PHYSICSFísica nuclearHigh Energy Physics::ExperimentParticle Physics - Experiment
researchProduct